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The ‘black boxes’ of ecological stoichiometry, planktonic microbes, have long

been recognized to have considerable effects on global biogeochemical cycles.

Significant progress has been made in studying these effects and expanding our

understanding of microbial stoichiometry. However, the ‘black box’ has not been

completely cracked open; there remain gaps in our knowledge of the fate of

elements within the phytoplankton cell, and the effect of external processes on

nutrient fluxes through their metabolism and into macromolecules and biomass -

the eponymous ‘gray box’. In this review paper, we describe the development of an

integrative modeling approach that involves a stoichiometrically explicit model of

Macromolecular Allocation and Genome-scale Metabolic Analysis (MAGMA) to

gain insights into the intra- and extracellular fluxes of nutrients using the

cyanobacterium Parasynechococcus marenigrum WH8102 as a target model

organism. We then describe an example of the genome-scale resources for P.

marenigrum that can be used to build such an integrated modeling tool to see

through the gray box of phytoplankton stoichiometry and improve our

understanding of the effects of resource supplies and other environmental

drivers, especially temperature, on C:N:P demand, acquisition, and allocation at

the cellular level.
KEYWORDS

cyanobacteria, flux balance analysis, MAGMA, macromolecular model, macromolecules,
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Redfield and the stoichiometry of
marine phytoplankton

In 1934, Alfred Redfield observed that the molar ratio of carbon

(C), nitrogen (N), and phosphorus (P) in phytoplankton biomass

was approximately 106:16:1. This pattern was found to be

consistent throughout the world’s oceans, from surface waters to

deep dissolved nutrient pools (Redfield, 1934). Redfield proposed

that this ratio was shaped by intracellular processes in

phytoplankton, a hypothesis supported by further research

(Pahlow, 2005; Loladze and Elser, 2011).

Although the Redfield ratio demonstrates a pronounced central

tendency of 106:16:1, the existence of variation around these

canonical values remains relevant and important to understand in

order to distinguish stochastic variability in phytoplankton

stoichiometry from more extreme changes that may indicate

significant disturbances in global biogeochemical cycling. Shifts in

cellular stoichiometry are frequently associated with specific growth

rate, as at low growth rates, organisms tend to reflect the

stoichiometry of their surrounding environment (“you are what

you have available to eat”), whereas, at high growth rates, the

stoichiometry of organisms deviate from the environment and

converge towards a narrow range of values (“you eat what you

need”) (Klausmeier et al., 2004a; Persson et al., 2010). Indeed, at

maximum growth rate, cellular elemental composition reaches a

species-specific ratio, often similar to the established Redfield Ratio

of C:N:P 106:16:1 (Redfield, 1934; Rhee and Gotham, 1981; Sterner

and Elser, 2003; Klausmeier et al., 2004a; Bi et al., 2012).

There is also a significant spatial component to the observed

variation around the canonical Redfield Ratio in the oceans.

Latitudinal variation in phytoplankton stoichiometry was

identified in a model-data synthesis by Weber and Deutsch

(2010) and subsequently supported by field sampling and further

data synthesis from Martiny et al. (2013). The strongest deviations

from Redfield were found in the warm, low-latitude, low-nutrient

ocean gyres, which were found to have both higher C:N and higher

N:P ratios (195:28:1), while ratios more closely resembling Redfield

(78:13:1) were found in the colder, nutrient-rich, high-latitude

waters. There is also spatial variation due to depth with most of

the variation in stoichiometric ratios found in the surface while the

deep ocean N:P was typically closer to the Redfield ratio, regulated

by net export of production (Gruber and Deutsch, 2014).

Taxonomic differences are also relevant. For example, N-

sensitive species (i.e., those with low C:N and high N:P ratios,

which are therefore primarily N-limited) show higher C and lower

N under N limitation, whereas insensitive species maintain stable C:

N ratios (Goldman and Peavey, 1979; Garcia et al., 2016). Diurnal

cycles (Olson et al., 1986) and light availability also affects

stoichiometry, with C content increasing in some lineages

(Leonardos and Geider, 2004) but less in others (MacIntyre et al.,

2002), and N content decreasing with increasing light in certain

lineages (Finkel et al., 2006). Much of what we see at the whole

cellular level in C:N:P variation of planktonic microbes may be

linked to metabolic and biochemical shifts at a subcellular

level.Under high light and nutrient limitation, the N-rich light-
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harvesting apparatus is down-regulated, while the C-rich energy

reserves increase (Kromkamp, 1987; Geider et al., 1996), leading to

high C:N ratios. This is reversed under low light conditions

(Bouman et al., 2006). Macromolecular allocation also varies

diurnally, with photosynthetic proteins being expressed during

the day, cell division proteins near sunset, and carbohydrate

metabolism proteins at night, causing variations in nucleic acid,

pigment, and protein contents (Vaulot et al., 1995; Matallana-

Surget et al., 2014; Lopez et al., 2016) and resulting in diurnally

variable C:N:P ratios. Under P limitation, phytoplankton upregulate

proteins involved in phosphate regulation to increase P uptake or

access organically bound P (Torriani-Gorini, 1987; Wanner, 1993),

which can increase total cellular protein content (Liefer et al., 2019).

Under N limitation, N uptake proteins are also upregulated

(Herrero et al., 1985; Tolonen et al., 2006), but to a lesser extent

than under P limitation, resulting in more modest changes in

protein content (Liefer et al., 2019).
Gray boxes and the complexity of
cellular processes

Despite their fundamental role at the base of the food web

exerting bottom up controls on the ecosystem, planktonic

microbes, including bacteria and phytoplankton, have historically

been considered as “black boxes” (Riley, 1946), due to the inherent

complexity and limited understanding of the underlying

biochemistry at the microscopic scale. In fact, microbial

communities encompass a wide range of metabolic pathways and

can rapidly adapt to changing environmental conditions, with

important implications for biogeochemical cycling. However,

extensive work has been carried out to unlock this black box to

better understand the role of planktonic microbes in global

biogeochemical cycles and to incorporate this information into

stoichiometric models of nutrient cycling. Thus, the microbial black

box from the early days of marine biogeochemistry is now much

more transparent but knowledge gaps do remain. We therefore argue

that the microbial black box has become a semi-transparent “gray

box” (Figure 1), involving a mixture of known and unknown aspects

of cellular physiology. These improvements in understanding are due

to the application of new methods, such as advanced elemental

analysis techniques such as XRMA and Raman microscopy that

have allowed researchers to quantify the C:N:P ratios of individual

phytoplankton cells (Hall et al., 2011; Segura-Noguera et al., 2016).

Mechanistic models of elemental allocation have also provided vital

insights into how phytoplankton cells build biomass and allocate to

macromolecular pools under varying resource supply (Inomura et al.,

2020a; Armin and Inomura, 2021). Meanwhile, genome-scale

metabolic modeling has been applied, to name but a few, to

studying the evolution of phosphorus metabolism (Casey et al.,

2016), the balance of nitrogen and sulfur in diatom-mediated redox

equilibrium in the oceans (van Tol and Armbrust, 2021), the

dynamics of carbon storage and nutrient release in marine

cyanobacteria (Ofaim et al., 2021), and dynamic nitrogen

metabolism in a model diatom (Smith et al., 2019).
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Additional abiotic drivers of
ecological stoichiometry
In addition to the clear roles of resource supply and taxonomic

variation in determining the elemental balance of an ecosystem and

its biota, other abiotic features of the environment can also have a

significant effect on the balance and flow of nutrients through an

ecosystem. Of particular concern are abiotic factors that are

changing rapidly, radically, and on a global scale, as a result of

human activities, and therefore have the potential to alter global

biogeochemical cycles in unpredictable and non-additive ways

(Velthuis et al., 2022).

Combinations of modeling, field sampling, and controlled

experiments have generated important hypotheses about the role of

the abiotic environment as a driver of stoichiometric variation.

Ocean acidification for example, caused by increased aqueous

pCO2 concentrations, has been mechanistically linked to stochastic

changes in C:N ratios in particulate organic matter through in situ

mesocosm experiments (Taucher et al., 2021) with modeling

approaches also hypothesizing interactive effects of nutrient

availability on responses to acidification (Verspagen et al., 2014).

Meanwhile, both experimental and modeling approaches

have demonstrated a highly interactive relationship between

nutrient supply and temperature, with strongly temperature-

dependent effects of nutrient supply on producer (Verspagen et al.,
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2014; DeVries, 2018; O'Donnell et al., 2021) and consumer (Starke

et al., 2021) growth rates. A recent meta-analysis has also found

strong interactions among temperature, biogeography and phenotype

on determining the stoichiometry of marine phytoplankton (Yvon-

Durocher et al., 2015).

Temperature can also influence macromolecular allocation,

with higher temperatures leading to lower ribosome allocation

(Hochachka and Somero, 1984; Toseland et al., 2013; Yvon-

Durocher et al., 2015) and thus lower RNA content (Tempest and

Hunter, 1965; Yun et al., 1996). Such decreases should increase

cellular C:P and N:P. Toseland et al. (2013) also found that in low-

latitude environments (<30°N/S), phytoplankton rates of protein

synthesis were increased even though ribosomal production was

decreased, indicating that phytoplankton require a lower density of

ribosomes for protein synthesis at higher temperatures and a higher

density at lower temperatures.

What many of the temperature-based studies (Yvon-Durocher

et al., 2015; Moorthi et al., 2016; Starke et al., 2021) have in common

is that they have identified and characterized the role of the

temperature in determining organismal stoichiometry from a

population, community, or whole-organism perspective. They

have hypothesized that temperature-dependent processes

occurring at a subcellular level, such as metabolism, play a key

role in driving organismal stoichiometry at global scales,

highlighting the benefit of incorporating omics data into

ecological stoichiometry.
FIGURE 1

Diagram showing fluxes of carbon, nitrogen, and phosphorus between the atmosphere, the oceans, and primary producers and between
macromolecular pools within the phytoplankton ‘gray box’. The colors represent different elements involved in nutrient cycling: red indicates
nitrogen, yellow represents carbon, and blue corresponds to phosphorus.
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The utility of ‘omics in ecological
stoichiometry studies

Omics data have been successfully integrated into lab- and field

studies of ecological stoichiometry through the measurement of

bulk pools of key metabolites in response to resource supply and

other environmental drivers (Singh and Tiwari, 2000; Wagner and

Frost, 2012; Zhang et al., 2022). These experiments have provided

vital insights into the molecular processes determining organismal

stoichiometry. For example, metabolomic analysis of a marine

dinoflagellates demonstrated that the allocation of key

macromolecular precursors, such as amino acids (i.e., N-rich) and

soluble sugars (i.e., C-rich), are highly temperature-dependent, with

increased allocation to C-pools (sugars) at high temperatures and

increased allocation to N-pools (amino acids) at low temperatures

(Singh and Tiwari, 2000; Wagner and Frost, 2012; Zhang et al.,

2022). The enzyme alkaline phosphatase has been found to play a

key role in cellular responses to varying phosphorus supply in both

planktonic microbes (Singh and Tiwari, 2000) and metazoans

(Wagner and Frost, 2012).

While invaluable, a drawback of quantifying bulk metabolite

pools experimentally is the limited ability to study dynamic fluxes of

metabolites. This can be achieved at a population level through

sampling of the population at discrete time intervals, in a chemostat

for example, but these measurements are complicated by potential

effects of dilution on population stoichiometry (Klausmeier et al.,

2004b) and still represent only snapshots in time rather a truly

dynamic view of metabolite flux. Carrying out metabolomic analysis

on individual cells meanwhile can only produce a single static

measurement of metabolite concentration and composition under a

single set of conditions.

In silico modeling approaches that integrate omics data into

stoichiometric models allow for the dynamic quantification of

metabolites and biomass composition, even at the level of an

individual cell. These omic- and stoichiometric-explicit models

have provided fascinating insights into the highly temporally

dynamic nature of phytoplankton stoichiometry (Hagstrom et al.,

2024; Omta et al., 2024). Moreover, they have suggested a potential

hypothesis to account for discrepancies in field observations of

phytoplankton, such as those observed in North Atlantic N:C

stoichiometry datasets (Sauterey and Ward, 2022).
Elucidating phytoplankton
subcellular physiological
responses to environment

When developing models that integrate stoichiometry and

omics, cellular physiology can be considered from (at least) two

different perspectives: metabolic fluxes and macromolecular

allocations. On one hand, a phytoplankton cell is a machine

consisting of thousands of reactions that maintain the cell and

eventually produce new biomass. Most reactions are mediated by

enzymatic activities, and their presence can be informed by the

presence of a gene, its transcript, or, more importantly, the protein
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itself. While this reaction-centric approach is a view highly focused

on metabolic fluxes, the macromolecular viewpoint focuses on the

net outcome of these fluxes: the amounts and relative allocations of

different macromolecules. The need for a robust model integrating

omics and stoichiometry for phytoplankton arises from the

limitations of our current understanding of physiological

responses and microbial contributions to nutrient dynamics in

marine ecosystems. Models have been developed that embrace

these two different perspectives but do so separately (Figure 2).

Genome-scale metabolic modeling (GSM) reconstructs a detailed

metabolic network based on `omics information, informing about

the presence and absence of each metabolic step. The key in such

models is the choice of the objective function. Typically this is the

biomass objective function (Feist and Palsson, 2010). In GSMs,

biomass stoichiometry must be predefined and is typically

represented as a fixed composition of macromolecules in terms of

their elemental components like C:N:P. This fixed representation of

stoichiometry means that GSMs cannot inherently capture changes

in the elemental composition of biomass that may occur under

different environmental conditions or nutrient availability. Flux

balance analysis (FBA) complements GSM by solving a linear

function that is used to find the optimal distribution of metabolic

fluxes that satisfy all the constraints, such as mass balance, and

optimize a particular objective, such as maximizing biomass

production. With the biomass stoichiometry given, FBA can

predict fluxes for the precursors of macromolecules. The

stoichiometric coefficients of each reaction constrain the flow of

metabolites through the GSM in two ways. First, system boundaries

are established to ensure that, at steady state, the total production of

any given compound is equal to its total consumption. Second, each

reaction is assigned upper and lower bounds that define the

maximum and minimum allowable fluxes. These checks and

balances determine the range of possible flux distributions within

the system, specifying the rates at which metabolites are produced

and consumed by each reaction. It is essential that these rates are

physiologically relevant (Orth et al., 2010; Fang et al., 2020). FBA is

highly standardized and is increasingly used as a tool in the analysis

of `omics data (e.g. Nishimura and Yoshizawa, 2022; Paoli et al.,

2022) and has proven useful in the bioengineering world, where

models of phytoplankton and other microbes have been used

extensively (e.g., Nambou et al., 2015; Banerjee et al., 2016;

Vikromvarasiri et al., 2023) to help identify optimal growth

parameters and biomass production for economically

important species.

FBA, however, treats the cell as a discrete unit, which limits the

ability of the model to communicate with the external environment

and reduces our ability to incorporate and explore ecologically

relevant relationships and feedback between the cell and the

ecosystem. To allow FBA to accommodate a range of

environmental conditions, a conditional version of FBA (cFBA)

was developed (Rügen et al., 2015). This introduces discrete time

intervals into the model cycle, during which flux distributions can

be captured without optimization. The approach was developed

initially to study the effects of varying light availability in

cyanobacteria, but has since been adapted to predict the impact

of temperature on metabolic fluxes (Páez-Watson et al., 2023).
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Macromolecular models resolve and simulate the actual mass

and allocation of macromolecules in phytoplankton (Figure 2).

There are a variety of methods and most of these are based on

empirically informed equations (e.g., Inomura et al., 2020a, 2022;

Omta et al., 2020; Sullivan et al., 2024). Given the fixed elemental

stoichiometry of macromolecules, modeling of macromolecular

allocation can readily lead to modeling of elemental stoichiometry

of the entire cell. While macromolecular models typically do not

resolve detailed metabolic fluxes, they do include key metabolic

processes such as photosynthesis, respiration, and growth that are

related to macromolecular allocation. This simplicity increases

computational efficiency, allowing these models to be run at the

scale of the global ocean (e.g., Inomura et al., 2022; Sullivan et al.,

2024). Macromolecular models may interact with the external

environment, as embedded in the ocean simulation (Inomura

et al., 2022) and provide empirically supported physiological

acclimation. However, macromolecular models alone do not

typically represent the detailed metabolic fluxes that can be

informed by the vast accumulation of ‘omics data.
A combined modeling
approach: MAGMA

To integrate these two approaches, we envision a combination

that entails a stoichiometrically explicit model of macromolecular

allocations with a genome-informed quantitative kinetic FBA:
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MAGMA (Macromolecular Allocation and Genome-scale

Metabolic Analysis) (Figure 2).The first step in developing such

an integrated model is to use a macromolecular model to predict

elemental stoichiometry based on the typical elemental

stoichiometry of each macromolecule based on environmental

factors (light, nutrients) (e.g., Inomura et al., 2020a). In the

second step, the predicted elemental stoichiometry is used to

constrain the FBA. This will allow the FBA to predict metabolic

fluxes with varying elemental stoichiometry under various

environmental conditions. The FBA can provide the allocation of

precursor molecules for various macromolecular allocations, which

can then be compared with the output of a macromolecular

allocation model (Figure 2). In Table 1, we demonstrate how

integrating omics data into macromolecular allocation modeling

may be used to test hypotheses about the role of temperature-

dependent subcellular processes in determining phytoplankton

stoichiometry ratios in the ocean (e.g.,Yvon-Durocher et al., 2015).

It is important to note that FBA models, like other “omics-based

models,” (e.g., Antoniewicz, 2020; Faure et al., 2021; McDaniel et al.,

2022) are subject to substantial uncertainty. This is due to the fact that

they are only as powerful as the available omics resources used to

construct them. A significant number of phytoplankton genomes and

metagenomes are incomplete, with a considerable number of

metabolic reactions remaining unassigned. Additionally, there are

species-specific variations and functions that have yet to be

characterized (Lv et al., 2015; Faure et al., 2021; Faria et al., 2023).

A number of resources are available for this purpose, including
FIGURE 2

Schematic of MAGMA. Two complementary models for simulating phytoplankton physiology and C:N:P stoichiometry and how these may be
integrated toward MAGMA. Left and right schematic describes the macromolecular model and detailed metabolic model respectively. The bullet
points describe complementary features of each model. In the macromolecular model schematic, arrows describe metabolic fluxes and boxes
represent pools of molecules and elements, except that the green box represents a cell. In the schematic of the detailed metabolic model,
nodes represent metabolite and lines represent metabolic fluxes. The black arrows show information provided from one model to the other,
demonstrating how these two models may complement each other toward MAGMA. Source: Right panel adapted from Inomura et al. (2020b)
under CC BY 4.0 license.
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Prodigal (Hyatt et al., 2010), Prokka (Seemann, 2014),

MetaGeneAnnotator (Noguchi et al., 2008), and GeneMark.hmm

(Lukashin and Borodovsky, 1998), which can predict the functional

annotation of uncharacterized genes by making comparisons to

curated, characterized genomes. However, experimental work, such

as knock-out studies (e.g., Schroer et al., 2023), is required to fully

characterize these reactions and their variations. The MAGMA

approach may prove beneficial in improving the accuracy of

functional annotations and informing hypothesis formation in

experimental annotation studies. It offers a biological context, in

the form of mechanistic simulations, for understanding the behavior

of these genes, their associated proteins, and the pathways in which

they are involved, under varying resource supply and macromolecule

production conditions. Because it includes extensive sets of equations

for mechanistically simulating macromolecular allocation, the

MAGMA approach can be differentiated from a recent integrative

study (Casey et al., 2022), which predicts macromolecular allocation

based on an optimization search bounded by empirical data.
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Current availability of genome-scale
resources for modeling

Despite the exponential growth of genomic data, the availability

of high-quality GSMs is limited for most microbial taxa. This is

especially true for aquatic microorganisms. The intricate nature of

microbial metabolism necessitates the development of de novo

GSMs (Thiele and Palsson, 2010; Norsigian et al., 2020). The

BiGG database (King et al., 2016), a prominent repository for

GSMs, currently includes a model for the marine diatom

Phaeodactylum tricornutum CCAP 1055/1 (Levering et al., 2016).

In addition, GSMs have been developed for other microorganisms,

including freshwater cyanobacteria such as Synechococcus elongatus

PCC 7942 (Broddrick et al., 2016) and Synechocystis sp. PCC 6803

(Nogales et al., 2012), as well as the freshwater alga Chlamydomonas

reinhardtii (Chang et al., 2011). In addition to the BiGG database,

other marine GSMs include Synechococcus sp. PCC 7002 (Qian

et al., 2017), Prochlorococcus MED4 (Ofaim et al., 2021),
TABLE 1 Hypothesized effects of warming on C:N:P allocation to major macromolecular pools (lipids, carbohydrates, and proteins) and description of
MAGMA-based hypothesis test.

Macromolecular
pools

Hypothesized effects of warming MAGMA hypothesis test

Lipids Hypothesis 1: Phosphorus allocation to lipids is sensitive to temperature.
Hypothesis 2: The effect of temperature on P allocation to lipids varies by lipid function.
Prediction 1: Higher allocation of P to lipids under warming
Prediction 2: Overall C:P ratios of lipid pool will be driven by allocation to membrane lipids
specifically.
Rationale: There is evidence Guschina and Harwood (2006) that organisms modify their
membrane lipid composition in response to temperature changes (e.g., increasing
unsaturated fatty acids in colder conditions), while Gasp̌arović et al. (2023)found that both
temperature and, paradoxically, P-limitation increased the relative amount of phospholipids
in the cell membrane which they linked with the higher production of saturated fatty acids
under stress conditions.

Predict C:N:P allocation to lipids under
range of temperatures; constrain model
using allocation data; calculate the
contribution of lipid-based biomass formed
by membrane lipids and fluxes of P into
fatty acid synthesis pathway

Carbohydrates Hypothesis 1: Carbon allocation to carbohydrates shows a bell-curve response to warming
Hypothesis 2: Molecular thermal stress responses drive N allocation to carbohydrate
production
Prediction: C:N and C:P ratios will initially increase upon temperature increases but will
decrease when temperature hits an upper threshold outside of their normal temperature
range.
Prediction 2: Decreased C:N ratios at high temperatures will be driven both by decrease
photosynthetic activity and increased N allocation to antenna proteins (i.e., PsbU and PsbV)
Rationale: There is evidence that photosynthetic efficiency (PE) has a bell-curve response to
temperature (Zhang et al., 2022), with a moderate temperature increase causing a spike in
PE and an increase in carbon allocation to the carbohydrate pool (Young et al., 2015) while
a more extreme temperature increase may cause damage to the photosynthetic apparatus, a
decrease in PE and carbon allocation (Mai et al., 2021) and increased production of
antennae proteins PsbU and PsbV to protect photosystem from damage (Grettenberger
et al., 2024).

Predict temperature-dependent effects on
photosynthesis and allocation to
carbohydrates; constrain model using
allocation data; track the production and N
allocation to antennae proteins PsbU and
PsbV under different temperature-dependent
rates of photosynthesis.

Proteins Hypothesis: N allocation to protein synthesis is dependent on both rates of synthesis and
temperature-dependent amino acid composition.
Prediction 1: At high temperatures, allocation of N to proteins will be driven by rates of
protein synthesis while at low temperatures, allocation of N to proteins will be driven by
amino acid composition.
Prediction 2: There will be a breakpoint temperature at which protein synthesis and amino
acid composition switch places as key drivers of N:P.
Rationale: There is evidence that rates of protein synthesis increase under warming, while
overall ribosome concentration decreases, which causes increased N:P ratios of
phytoplankton (Toseland et al., 2013l; Yvon-Durocher et al., 2017). Phytoplankton have also
been demonstrated to divert N into N-rich amino acids (asparagine, glutamine, and aspartic
acid) under lower temperatures (Zhang et al., 2022).

Predict temperature-dependent allocation of
C:N:P to proteins under varying
temperatures;
constrain the protein production of the
model using these data and track amino acid
composition of protein in biomass at
different temperatures.
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Synechococcus sp. PCC 11901 (Ravindran et al., 2024). and the

marine diatom Thalassiosira pseudonana CCMP 1335 (van Tol and

Armbrust, 2021). Other examples of freshwater cyanobacteria

include Synechococcus sp. UTEX 2973 (Mueller et al., 2017),

Arthrospira platensis NIES-39 (Yoshikawa et al., 2015), and

Nostoc sp. PCC 7120 (Norena-Caro et al., 2021). Cyanobacteria-

specific models are particularly challenging because of the vast

number of genes that remain unidentified or hypothetical (Lv et al.,

2015). Consequently, to function they require a comprehensive

process of gap-filling reactions (Faria et al., 2023).

More recently, the use of GSMs for marine picocyanobacteria,

such as Prochlorococcus, has facilitated a deeper understanding of

their metabolic processes and ecological role within the global

ocean. Marine picocyanobacteria Prochlorococcus and

Synechococcus are estimated to constitute approximately 10% of

the total marine picoplankton population in the upper 200m of the

world’s oceans, contributing up to 25% of the ocean’s net primary

productivity (Flombaum et al., 2013). Furthermore, their C:P and

N:P ratios can span a range exceeding one order of magnitude larger

than that observed in other phytoplankton taxa in the marine

environment (Garcia et al., 2016).

Using an extended genome-scale metabolic model of

Prochlorococcus strain MED4 coupled with FBA, Ofaim et al.

(2021) investigated the relationships among key nutrients (C, N,

P, and light), carbon storage, and excretion, in both static and

dynamic settings. Under N-limited conditions, glycogen storage

and organic acid exudation were favored, whereas amino acid

exudation was the dominant process under P-limitation. Building

upon this methodology, Casey et al. (2022) constructed a pan-GSM

from 69 Prochlorococcus isolates to investigate strain-specific

dynamics across an Atlantic Ocean transect (Casey et al., 2022).

By optimizing the pan-GSM to align with local physical and

chemical conditions, the authors were able to predict strain-

specific growth rates, metabolic configurations, and niche

adaptations. These predictions were then linked to the observed

ecotype abundances and ecosystem organization. Most recently in a

preprint by Régimbeau et al. (2023), the Prochlorococcus strain

MED4 GSM (Ofaim et al., 2021) was integrated into Earth System

Models (ESMs) to bridge the gap between current ESMs

understanding of nutrient limitations, phenotypic, traits, and the

available genome-centered information (Régimbeau et al., 2023). By

incorporating the metabolic diversity of Prochlorococcus, the study

explores the impact of nutritional constraints on phytoplankton

physiology and biogeochemical functions, emphasizing the

potential of genome-enabled ESMs to more accurately quantify

contributions to dissolved organic carbon production.

The creation of a single-celled stoichiometric mass balance

model of these major primary producers would assist in

elucidating the influence of changes in nutrient availability on

cellular processes, elemental composition, and growth, which in

turn impact global carbon, nitrogen, and phosphorus budgets.

Accordingly, this proof-of-concept MAGMA model could be

applied to other ecologically important organisms and used in

disparate ecosystems.
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Example developmental process
for MAGMA

We next present a methodology for developing a joint GSM-

macromolecular al locat ion model , MAGMA, for the

cyanobacterium Parasynechococcus marenigrum (formerly known

as Synechococcus sp. WH8102), to represent one of the most

abundant phytoplankton genera in the ocean (Coutinho et al.,

2016; Garcia et al., 2016). This organism constitutes a major and

pervasive component of marine ecosystems (Figure 3A), inhabiting

a range of habits from coastal to pelagic waters from subtropical to

high latitudes (Bertilsson et al., 2003; Rost et al., 2003).

Furthermore, a substantial body of research has evaluated the

elemental stoichiometry of P. marenigrum’s under diverse

nutrient conditions, making it an optimal model organism for

assessing the feasibility of our MAGMA approach (Su et al., 2006;

Tetu et al., 2009; Kretz et al., 2015; Mouginot et al., 2015; Garcia

et al., 2016). The WH8102 strain has been established as a model

organism due to the availability of its fully sequenced genome and

its capacity for genetic manipulation (Palenik et al., 2003). As

indicated by the Genome Taxonomy Database (GTDB), the

species cluster for P. marenigrum WH8012 encompasses seven

high-quality (Parks et al., 2022) representative marine genomes

from disparate geographical regions (Figure 3A). The remaining

representative genomes of this cluster include: WH8103, which was

isolated from the Sargasso Sea; A18-40 and A18-46.1, which were

isolated in the Atlantic Ocean; BOUM118, which was isolated from

the Mediterranean Sea; RS9915, which was isolated from the Indian

Ocean; and YX04-3, which was isolated in the South China Sea. The

type strain of the species is WH8102, a strain isolated from the

Sargasso Sea in the Atlantic Ocean. The creation of a P. marenigrum

pan-GSM from these seven genomes would be advantageous for the

purpose of capturing the diverse functions exhibited by the

organisms across different marine environments. However, there

is currently no GSM resource available for WH8102, nor for a

closely related cyanobacteria GSM, as their average nucleotide

identities (ANI) are less than 97% similar (Figure 3B).
Step 1: reconstructing a pangenome-scale
metabolic model

Seven high-quality genomes representing the P. marenigrum

species cluster were obtained from the GTDB, release 220 (Parks

et al., 2022). The ANI was determined in relation to strain WH8102

using fastANI (Jain et al., 2018). The genomes of the P.marenigrum

strains exhibited ANI values exceeding 97% (with an average of

98.37% ± 0.46%), as indicated in Supplementary Table S1. These

values were observed in comparison to the reference genome of P.

marenigrum WH8102 (Supplementary Table S1). The genomes

were annotated with Prokka (Seemann, 2014) using the default

settings and with -genus Synechococcus. The average size of the

seven genomes was 2.42 Mb ± 0.047 Mb, with an average of

approximately 2,690 ± 46 proteins.
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A pangenome-scale metabolic model was constructed using

gapseq v. 1.3.1 (Zimmermann et al., 2021) with the ‘doall’ command

using the protein fasta file derived from all genomes. Reaction

identifiers and names that were absent from the data set were

manually curated from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa et al., 2021), BiGG (King et al.,

2016), and ModelSeed (Seaver et al., 2020) databases.
Step 2: tuning and validating a robust GSM
for the WH8102 strain cluster

To build on the basic pangenome-scale model and produce a

model that can accurately carry flux through the network to

produce rea l i s t i c e s t imates o f b iomass produc t ion ,

macromolecular composition, and biomass stoichiometry, a

multi-stage workflow that involves multiple rounds of literature

review, gap filling, refinement and validation is necessary (Figure 4)

(Thiele and Palsson, 2010; Knoop et al., 2013; Norsigian et al.,

2020). The existence of other balanced and experimentally validated

cyanobacterial GSMs, such as iJN678 for Synechocystis PCC6803

(Knoop et al., 2013) and iJB785 for Synechococcus PCC7942

(Broddrick et al., 2016), provides an excellent foundation for the

construction of the WH8102 model, given that they are all within

the Synechococcales order (Trautmann et al., 2012). However, the
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global distribution of the Synechococcales in marine and freshwater

environments (Callieri et al., 2013; Dvorá̌k et al., 2014) suggests that

they likely differ significantly in their nutrient utilization and

metabolic pathways. Indeed, considerable variation is evident not

only in their genetic similarity (Figure 3B) but also metabolically

(Figures 3C, 5A).

While our proposed integrated modeling approach will

facilitate this process by establishing realistic bounds for

macromolecular allocation and biomass composition, additional

detailed information is required regarding the specific metabolites

and reactions from which the macromolecules are produced.
Step 3: accounting for strain/species-
specific metabolism

A comparison of the Synechocystis PCC6803 (iJN678),

Synechococcus elongatus PCC7942 (iJB785) and Prochlorococcus

MED4 (iJC581) models’ metabolic pathways (using KEGG IDs)

with our WH8102 pangenome model reveals that approximately

19% of the metabolic reactions present in the models are shared

among all four of the strains/strain clusters (Figure 3C).

Furthermore, additional pairwise overlaps of metabolic reactions

were observed between the strains, representing approximately 10%

to 20% of the reactions. Additionally, the Synechocystis PCC6803,
FIGURE 3

Comparison of Parasynechococcus marenigrum WH8102 distribution and GSM. (A) Isolation location of P. marenigrum strains mapped onto global ocean N:P
of total phytoplankton biomass. (B) Average nucleotide identity (ANI) between P. marenigrum strains and current existing GSMs of freshwater cyanobacteria
S. elongatus PCC 7942 and Synechocystis sp. PCC6803, and marine Prochlorococcus MED4. (C) Unique and shared KEGG reactions between the WH8102
draft pan-GSM and S. elongatus PCC 7942 and Synechocystis sp. PCC6803. Source: (A) adapted from Inomura et al. (2022) under CC BY 4.0 license.
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FIGURE 4

Flow chart showing the suggested workflow for building and tuning the pan-WH8102 GSM ready for use in cFBA. We approximate 6-8 months to
complete the workflow, depending on the availability of necessary data and amount of QA/QC required.
FIGURE 5

(A) Comparison of biomass composition as macromolecular precursors between the P. marenigrum WH8102 pangenome, S. elongatus PCC 7942,
Synechocystis sp. PCC6803, and Prochlorococcus sp. MED4 GSM. (B) Biomass precursor C:N:P stoichiometry and total biomass C:N:P
stoichiometry estimated from GSM metabolite formulas and reaction stoichiometry for the three published models.
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Synechococcus PCC7942, and Prochlorococcus MED4 models

exhibited approximately 2 to 20% of reactions that were exclusive

to their respective models. In contrast, the WH8102 pan genome

model displayed a higher proportion of unique metabolic reactions,

with approximately 27% of its reactions not shared by either of the

other strains. This reflects significant variations in habitat, as well as

in the acquisition, use, and storage of carbon, nitrogen, and

phosphorus (Figures 5A, B). These differences must be taken into

account when developing the pan-WH8102 model and constructing

the cluster-specific biomass objective function. For instance,

Synechocystis PCC6803 is a facultative photoautotroph whereas

Synechococcus PCC7942 and WH8102 are both obligate

photoautotrophs (Palenik et al., 2003; Six et al., 2004; Billis et al.,

2014). This distinction implies that the iJN678 biomass objective

function is, in fact, composed of three discrete biomass reactions,

representing three distinct trophic states and carbon metabolic

pathways for autotrophy, heterotrophy, and mixotrophy.

Accordingly, the iJB785 model would be the more appropriate

model to inform the construction of the photosynthetically-

dependent components of the biomass objective function for pan-

WH8102, although key differences in photophysiology would also

need to be considered.

Freshwater strains of cyanobacteria, such as Synechococcus PCC

7942, possess the ability to adjust the ratios of phycocyanin and

phycoerythrin in their pigment composition in response to changes

in light color. In contrast, the marine P. marenigrum WH8102

strain is unable to adapt its pigment composition in response to

changes in light color, and instead exhibits a pigment composition

similar to other marine strains, which possess unique

phycobilisome components not found in freshwater species.

These components include R-phycocyanin II and two forms of

phycoerythrin (PEI and PEII). Marine strains also exhibit a higher

light tolerance, which allows them to adapt to the varying light

conditions present in the deep, oligotrophic ocean (Six et al., 2004).

This is in contrast to Prochlorococcus MED4, which is adapted to

high light levels at the ocean surface (Steglich et al., 2006) and has a

unique pigment composition (Partensky et al., 1999). It is therefore

essential to exercise caution with regard to the light- and pigment-

dependent aspects of the model, including the pigment composition

specified in the final biomass objective function.

In addition to differences in photophysiology, key differences in

nutrient metabolism will also need to be addressed because the

strategies employed for the acquisition, processing, and allocating of

nitrogen and phosphorus likely reflect the scarcity observed in the

oligotrophic ocean in comparison to fresh and coastal waters.

Indeed, the P. marenigrum strain cluster used in our pangenome

model inhabits the nutrient-poor open ocean, a habitat also shared

by Prochlorococcus MED4 while the freshwater (Synechocystis sp

6803, Synechococcus sp. 7942) and brackish/coastal (Synechococcus

sp. 7002) species for which GSMs have been developed are adapted

to shallower, nutrient-rich coastal and inland waters.

The open ocean strains (MED4 andWH8102) lack the ability to

fix nitrogen and instead rely on urea as their primary N source, with

occasional NOx/NH3 inputs (Palenik et al., 2003). They primarily

scavenge for inorganic P with high-affinity phosphate-binding

proteins (Ranjit et al., 2024). MED4 on the other hand is unable
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to utilize NOx and is entirely reliant on urea and NH4 as N sources

(Garcıá-Fernández et al., 2004). The utilization of urea as a primary

nitrogen source renders these marine strains susceptible to

limitation by nickel, which is a vital component of Ni-containing

urease (Dupont et al., 2008). Furthermore, compelling genomic

evidence indicates that the WH8102 strain in particular has obligate

requirements for Ni even when obtaining N as NOx or NH4

(Dupont et al., 2008). While there are notable similarities between

MED4 and WH8102 as open ocean species adapted to oligotrophic

environments (Partensky et al., 1999), WH8102 is more tolerant of

varying nutrient conditions (Palenik et al., 2003) whereas MED4 is

more specifically adapted to low nutrient conditions (Rocap et al.,

2003). This has resulted in MED4 having a considerably smaller and

more streamlined genome and metabolism with a paucity of

regulatory genes (Dufresne et al., 2003; Garcı ́a-Fernández
et al., 2004).

Finally, in order to study temperature-dependent effects using a

constrained FBA, it is necessary to identify biologically and

thermodynamically (or enzymatically and energetically) realistic

temperature-dependent responses in the metabolic reactions and

formulation of biomass. This then would allow the reaction bounds

of the model to be constrained in a way that is consistent with the

observed responses. The current temperature-dependent cFBA

models for microbes were developed for polyphosphate- and

glycogen-accumulating organisms (PAO and GAO) in wastewater

(Lopez-Vazquez et al., 2009). The temperature coefficients may be

of broad relevance in providing thermodynamically reasonable

bounds. However, metabolism and allocation of resources of the

organisms in question differ substantially. Integration with the

macromolecular allocation model would be advantageous in this

area. While it is not feasible to adjust temperature-coefficients for

every reaction, temperature-based macromolecular data could

serve as an independent dataset for validating the cFBA

predictions and could be employed to develop broader level

temperature constraints on biomass reaction formation, growth,

photosynthetic reactions, uptake and assimilation rates, and

cellular maintenance. In other words, the data can be combined

to validate energetic constraints on select reactions/pathways using

more general values, and species-specific macromolecular

allocation data can be used to validate temperature-dependent

biological constraints.
Discussion

A comprehensive understanding of the effects of global change

on the oceans and their biogeochemical cycles requires an

examination of these effects at all levels of biological organization.

A considerable proportion of the currently unknown or poorly

characterized effects of temperature on nutrient flux (Figure 1)

occur at the individual and molecular level. These instances

underscore the knowledge gap that our MAGMA model would

help to bridge, helping to understand how microbes evolve resource

allocation strategies in response to shifting environmental pressures

and providing insight into the metabolic adaptations that drive

ecological and evolutionary dynamics.
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The combined model in MAGMA has the potential to advance

various fields, including, microbiology, ecology, biogeochemistry

and global change sciences. This integration allows the metabolic

network to operate within physiological and ecological constraints

that are responsive to environmental conditions (such as nutrient

availability and temperature), as opposed to utilizing fixed or

arbitrary constraints. This integration thus bridges the gap

between whole-ce l l s to ich iometry (addressed by the

macromolecular model) and detailed metabolic pathways

(captured by FBA), allowing us to connect cellular-scale elemental

allocation patterns to specific metabolic fluxes. This provides a

more comprehensive understanding of cellular stoichiometry in

response to environmental changes and leads to more reliable

estimates of growth rates, nutrient uptake, and byproduct

formation under different scenarios.

Furthermore, MAGMA would also allow the examination of

how trade-offs at the macromolecular level (e.g., allocation to

proteins vs. lipids) are reflected in specific metabolic trade-offs

(e.g., energy allocation to different biosynthetic pathways) and

elucidate the mechanisms by which environmental changes (such

as warming or nutrient limitation) impact cellular composition. For

example, one could trace how a change in P availability affects lipid

allocation in the macromolecular model, and then see how this

cascades through various metabolic pathways in the FBA.

Alternatively, we could explore how changes in protein:lipid

ratios under different nutrient regimes affect energy metabolism

or nutrient acquisition capabilities. By predicting the impact of

environmental conditions on cellular composition and metabolism

in more detail, this integrated approach could provide more realistic

inputs for ecosystem-level models of nutrient cycling and

energy flow.

The MAGMA framework is sufficiently general to accommodate

a range of ‘omics data. For instance, genomic and metagenomic data

may offer a suite of community members to be analyzed with

MAGMA to link inputs and outputs of resources shared across an

ecosystem. Likewise, information from closely related species and/or

strains can be used to see how genomic variations, across spatial

scales, manifest into observable phenotypic traits, such as nutrient

uptake rates or stress tolerance. Transcriptomic, metabolomic,

lipidomic, and proteomic data will provide more precise

measurements of expression regulation and actual metabolic fluxes.

These are crucial components in understanding the “bio” in

biogeochemical cycling, as well as in understanding how these

processes respond to changing environments.

We note that MAGMA need not be applied only to steady-state

systems but preferably to dynamic ones. For instance, if fluctuations

of environmental parameters such as light and nutrients are known,

these may be incorporated into the model to predict time-varying

macromolecular allocation, elemental stoichiometry, growth rate,

and metabolic fluxes. Both macromolecular (Omta et al., 2024) and

FBA (Höffner et al., 2013; Gomez et al., 2014) models have dynamic

versions, and these frameworks may be applied to MAGMA to

accommodate the dynamic nature of the environment and cellular

responses to it. Moreover, time-variant ‘omics data may enable

MAGMA to progressively narrow down the potential fluxes for
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different time points. The resulting macromolecular allocation and

elemental stoichiometry may be compared with time-variant data

for these parameters.

Moreover, once implemented in comprehensive ocean

simulations, MAGMA offers a distinctive instrument for

examining a range of significant unresolved biogeochemical

questions. For example, elucidating which factors contribute to

the maintenance of deep ocean N:P:O2 ratios approaching the

Redfield ratio (Gruber and Deutsch, 2014). Additionally, it would

be beneficial to ascertain the resilience of this to anthropogenic

perturbations, such as the application of fertilizers. The MAGMA

model may facilitate an investigation into the potential regulation of

the stoichiometry of export production at the ecophysiological level

and the extent to which it may contribute to the resilience of deep

ocean stoichiometry under anthropogenic influences.

To build MAGMA, biochemical and metabolic data are essential.

The useful measurements include, elemental mass and ratios,

macromolecular measurements, metabolic rates, especially major

ones including carbon fixation, respiration, and nutrient uptake. At

the same time, environmental data are highly informative, as they help

the model to pin down the relationship between biochemistry and

environment. These data include temperature, nutrient concentration,

concentration of other inorganic molecules (e.g., O2) and light

intensity. These environmental parameters may also inversely

estimate elemental stoichiometry related values (e.g., DeVries and

Deutsch, 2014). Ultimately, MAGMA will facilitate the linkage

between theoretical, experimental, and observational studies to

provide valuable insights into the impacts of global change on

marine ecosystems, particularly in terms of species-specific responses,

complex feedbacks, and the potential for nutrient imbalances.
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